PhpTabs

Jan 28, 2021

Contents

Overview 3
L1 Requirements v v v it e 3
1.2 Inmstallo e e e 3
1.3 Supported file formats 3
1.4 Contribution and sUPPOIt oL e e e e e e e 3
1.5 Runningthe testSuite o o i e e e e e e e e e e e e 4
1.6 LICENSE v o i e e e e e e e e e 4
Parse from files 5
2.1 PhpTabs o e e e e e e e e e e e 5
2.2 TOFACOTY . . o o v v o e e e e e e e e e e e e e e e e e e e 5
Parse from strings 7
3.1 TOFACtOTY . . o . v v o e 7
3.2 PhpTabs . . . o o e e e e e e e e 8
Export to files 9
4.1 PhpTabs::save($filename, $format=null) 9
Export to variables 11
5.1 Phptabs::convert($format) e e e 11
5.2 PhpTabs shortcuts o e e e e e e e e e 12
5.3 PHParray. o e e e e e 12
Traverse a whole song 15
6.1 Getterand counterrules L. e e e e e 15
6.2 Traversingexample 16
Target a track or a measure 19
7.1 onlyTrack o L e e e e e 19
7.2 onlyMeasurel e e e e 19
7.3 Chaining onlyTrack and onlyMeasure L oo 20
Slice tracks or measures 21
8.1 sliceTracks o L e e e e e 21
8.2 sliceMeasures e e e e e e e e e 22
8.3 Chaining sliceTracks and sliceMeasures v i it it e 22

10

11

12

13

14

15

16

17

18

Render a song
0.1 ASCIItabs o o e e
0.2 Vextabrendering L e e e e e e e e e e e

Render a song as ASCII
10.1 Quick USAZe o o e e e e e e e e e e e e e e e

Render a song as Vextab

1.1 Quick Usage o o e e e e e e e e
11.2 Customize VexTab options o o o o i et e e e e e e e e e e
11.3 Supported VexTab features L e e

Calculate measure and beat durations in seconds
12.1 Measure duration v e e e e e e e e e e e e,
122 Beatduration o e e e e e e e e e e e e

Create a song from scratch

13.1 Very minimalistic tablature L L e
13.2 A minimal and working tablature oL
13.3 A working tablature with several tracks and measures

Performance & caching

141 COontext o v o i e e e e e e e e e e e e e
14.2 Slicing tracks o e e e e e e
143 Exporting to JSON L e e e e e
144 Caching e

Architecture
15.1 Componentroles e e e e e e

IOFactory

16.1 create() v i e e e e e e e
16.2 fromArray($data) e e e e
16.3 fromFile($filename, $type) L L e
16.4 fromString($content, $type) L e
16.5 fromJsonFile($filename) e
16.6 fromSerializedFile($filename) e
16.7 fromJson($string) oo e e e e e e e e
16.8 fromSerialized($string) L e e e

PhpTabs

17.1 Readsonginformations e
17.2 Write song informations e e e e e e e e e e e
17.3 Channels e e e e e e
174 Measure headers
17.5 Tracks

Music model

I8.1 Tree o o o e
18.2 Traversing the treeismade simple e
18.3 Traversing the firstlevel L
18.4 Traversing Channels o e e e e e e
18.5 Traversing MeasureHeaders

23
23
23

25
25
26
28

29
29
29
31

35
35
36

37
37
37
39

43
43
44
45
46

49
49

51
51
52
53
53
54
54
55
55

57
57
58
58
59
59

18.6 Traversing Tracks

PhpTabs

PhpTabs is a PHP library for reading, writing and rendering tabs and MIDI files.
It provides direct methods to read a song name, get a list of instruments or whatever be your needs.

Phptabs is built on the top of a music stack that lets you create or modify your songs.

use PhpTabs\PhpTabs;
Sfilename = 'my-file.gp5';
Ssong = new PhpTabs ($Sfilename);

// Display some metadata
echo S$song->getName () ;

// Display the number of measures
// for the first track
echo S$song->getTrack (0)->countMeasures () ;

Contents

https://github.com/stdtabs/phptabs/releases
https://travis-ci.org/stdtabs/phptabs
https://packagist.org/packages/stdtabs/phptabs

PhpTabs

2 Contents

CHAPTER 1

Overview

1.1 Requirements

Support for PHP 7.2+ and 8.0

1.2 Install

’composer require stdtabs/phptabs

1.3 Supported file formats

PhpTabs currently supports the following file formats:
* GuitarPro 3 (.gp3)
* GuitarPro 4 (.gp4)
* GuitarPro 5 (.gp5)
e MIDI files (.mid, .midi)
* JSON (.json)
e XML (.xml)

1.4 Contribution and support

The source code is hosted on github at https://github.com/stdtabs/phptabs.

If you have any questions, please open an issue.

https://github.com/stdtabs/phptabs
https://github.com/stdtabs/phptabs/issues

PhpTabs

You want to write another parser, to fix a bug? Please open a pull request.

To discuss new features, make feedback or simply to share ideas, you can contact me on Mastodon at https://cybre.
space/ @landrok

1.5 Running the test suite

git clone https://github.com/stdtabs/phptabs.git
cd phptabs

composer require phpunit/phpunit
vendor/bin/phpunit

1.6 License

PhpTabs is licensed under LGPL2.1+.

4 Chapter 1. Overview

https://github.com/stdtabs/phptabs
https://cybre.space/@landrok
https://cybre.space/@landrok
https://github.com/stdtabs/phptabs/blob/master/LICENSE

CHAPTER 2

Parse from files

There are 2 ways to parse a file.

2.1 PhpTabs

The easiest way is to instanciate a PhpTabs with a filename as first argument.

use PhpTabs\PhpTabs;

Sfilename = 'my-file.gpb5';
Ssong = new PhpTabs ($filename);
echo S$song->getName () ;

It supports Guitar Pro 3, 4 and 5, MIDI, JSON and PHP serialized files.
The file format is recognized by the file extension (gp3, gp4, gp5, mid, midi, json, ser).
See all available PhpTabs methods.

2.2 IOFactory

If you need more control, I[OFactory is preferred.

After a read operation, a PhpTabs containing the entire song is returned.

use PhpTabs\IOFactory;

Sfilename = 'my-file.gp5';

(continues on next page)

PhpTabs

(continued from previous page)

$song = IOFactory::fromFile($filename);

echo S$song->getName () ;

If the file extension is not standard, a parser can be specified as the second parameter to force a file format.

use PhpTabs\IOFactory;
Sfilename = 'my-file.dat';

// The file is PHP serialized
Ssong = IOFactory::fromFile($filename, 'ser');

echo S$song->getName () ;

IOFactory offers some other shortcuts to load from a specified parser.

use PhpTabs\IOFactory;

// Try to read a JSON file
Stab = IOFactory::fromJsonFile ('mytabs. json');

// Try to read a serialized file
Stab = IOFactory::fromSerializedFile('mytabs.dat');

See all available shortcuts for IOFactory.

Chapter 2. Parse from files

CHAPTER 3

Parse from strings

Sometimes, you may need to parse a song from a string (binary or not).

3.1 IOFactory

It’s made with the fromString () method.

After a read operation, a PhpTabs containing the entire song is returned.

use PhpTabs\IOFactory;
Scontent = file_get_contents('my-file.gp5');
Ssong = IOFactory::fromString($content, 'gp5');

echo S$song->getName () ;

The file format is given as second parameter (gp3, gp4, gp5, mid, midi, json, ser).

IOFactory offers some other shortcuts to force a parser.

use PhpTabs\IOFactory;

// Parse a JSON content
Ssong = IOFactory::fromJson (Scontent);

// Parse a PHP serialized content
Ssong = IOFactory::fromSerialized($content);

See all available shortcuts for IOFactory.

PhpTabs

3.2 PhpTabs

After PhpTabs has been instanciated, you may call a parser.

use PhpTabs\PhpTabs;
Scontent = file_get_contents('my-file.gp5"');
Ssong = new PhpTabs () ;

// Parse a Guitar Pro string
$Ssong->fromString (Scontent, 'gpb5');

echo S$song->getName () ;

Warning: All modifications that you made before a fromString () call will be erased, including meta infor-
mations.

The fromString() method returns a PhpTabs instance.

use PhpTabs\IOFactory;
Scontent = file_get_contents('my-file.gp5');

// Render as ASCII in one line

echo IOFactory::create|() // PhpTabs
->fromString (Scor 'gp5') // PhpTabs
->toAscii(); // string

8 Chapter 3. Parse from strings

CHAPTER 4

Export to files

4.1 PhpTabs::save($filename, $format = null)

The save () method may be used to store file contents on a disk.

use PhpTabs\IOFactory;
Sfilename = 'my-file.gp5';

// Read and parse file
Ssong = IOFactory::fromFile($filename);

Ssong->save ('my-file.mid"');

The destination format is recognized by the file extension (gp3, gp4, gp5, mid, midi, json, ser, yml, xml) and the song
is implicitly converted to this format.

The following formats are available:
¢ gp3 for Guitar Pro 3
* gp4 for Guitar Pro 4
* gp5 for Guitar Pro 5
* mid ormidi for MIDI
* json
e xml
¢ ser for PHP serialized string
e txt or text for a textual representation
e yml or yaml

If the file extension is not standard, a format may be passed as the second parameter.

PhpTabs

Of course, you may read, convert and save in one line.

use PhpTabs\IOFactory;
Sfilename = 'my-file.gp5';

// The Guitar Pro file is parsed, converted
// and recorded as a JSON string
IOFactory::fromFile ($Sfilename)

->save ('my-file.dat', 'json');

10

Chapter 4. Export to files

CHAPTER B

Export to variables

5.1 Phptabs::convert($format)

Sometimes, for debugging or storing contents another way, you may want to output a song to a variable.

You may make an explicit conversion with the convert () method.

use PhpTabs\IOFactory;
Sfilename = 'my-file.gp5';
// The Guitar Pro file is parsed, converted and returned as MIDI

// content
Smidi = IOFactory::fromFile($filename)->convert ('mid"');

The following parameters are available:
* gp3 for Guitar Pro 3
¢ gp4 for Guitar Pro 4
¢ gp5 for Guitar Pro 5
* midormidi for MIDI
* json
e xml
* ser for PHP serialized string
* txt or text for a textual representation

e yml or yaml

11

PhpTabs

5.2 PhpTabs shortcuts

There are some shortcuts to do that.

use PhpTabs\PhpTabs;

$filename = 'my-file.gp5';
Ssong = new PhpTabs (Sfilename);

// Guitar Pro 3
Sgp3 = S$song->toGuitarPro3();

// Guitar Pro 4
Sgp4 = S$song->toGuitarPro4();

// Guitar Pro 5
$Sgp5 = $song->toGuitarProb5();

// MIDI
Smidi = $song->toMidi () ;

// JSON
$json = $song->todson{();

// XML
Sxml = S$song->toXml () ;

// YAML
Syml = S$song->toYaml ();

// Text
Stxt = S$song->toText ();

// PHP Serialized
Sser = $song->toSerialized();

All these methods return strings (binary or not).

5.3 PHP array

You may export a whole song as a PHP array with the toArray () method.

use PhpTabs\IOFactory;

Sfilename = 'my-file.gp5';
Ssong = IOFactory::fromFile ($Sfilename);
Sarray = S$song->toArray();

Exports are made to visualize the internal music-tree or to communicate with a third-party application.

Exported arrays may be imported with fromArray () method.

12 Chapter 5. Export to variables

PhpTabs

use PhpTabs\IOFactory;

1g = IOFactory::fromArray (Sarray);

This way of reading data is bypassing entire parsing and may lead to better performances for large files.

For those who are interested, there is a manual dedicated to performances issues.

Warning: All modifications that you made before a fromArray () call will be erased, including meta informa-
tions.

5.3. PHP array 13

PhpTabs

14 Chapter 5. Export to variables

CHAPTER O

Traverse a whole song

PhpTabs makes a song fully-traversable.
Starting from one point, you may find your way with the Music tree.
Traversing data is made with getter and counter methods.

A traversal is done in read-write mode

6.1 Getter and counter rules

There are 4 rules for getter names:
1. get + {objectName} + ()
It'saproperty getter method.

ie: a measure header may only contain one Tempo, so the method name to get the tempo for a given measure is
Sheader->getTempo ().

2. count + {objectName} + s()
It’'sanodes counter method.

ie: a track may contain several measures, so the method name to count them is
Strack—->countMeasures ()

3. get + {objectName} + s/()

It’s a collection getter method, it returns an array with all nodes.

ie: a track may contain several measures, so the method name to get them is $track—->getMeasures ().
4. get + {objectName} + ($index)

It gets a node from a collection by its index. $index is starting from O to n-1, with n=child count (returned by
the counter method)

15

PhpTabs

ie: there can be several measures per Track, so the method name to get one measure (the first) is
Strack—->getMeasure (0)

When in doubt, reference should be made to the Music-Model reference

6.2 Traversing example

In the following example, we’ll traverse all tracks, all measures and all beats, the goal is to print all notes.

use PhpTabs\Music\Note;
use PhpTabs\PhpTabs;

Stab = new PhpTabs('mytab.gp4');

Get all tracks
foreach (Stab->getTracks () as Strack) {
Get all measures
foreach ($track->getMeasures() as Smeasure) {
Get all beats
foreach (Smeasure->getBeats () as S$Sbheat) {
Get all voices
foreach (S$beat->getVoices () as Svoice) {
Get all notes
foreach ($voice->getNotes() as Snote) {

printNote (Snote);

J ok k
* Print all referential
* based on the note model
*
* @param \PhpTabs\Music\Note Snote
*/
function printNote (Note Snote)
{
echo sprintf (

"\nTrack %d - Measure %d - Beat %d - Voice %d - Note %s/%s",
Snote->getVoice () ->getBeat () —>getMeasure () —>getTrack () ->getNumber (),
Snote->getVoice () ->getBeat () ->getMeasure () —>getNumber (),

Snote->getVoice () ->getBeat () ->getStart (),
Snote->getVoice () -—>getIndex (),
Snote->getValue(),
Snote->getString ()

)i

will output something like

16 Chapter 6. Traverse a whole song

PhpTabs

Track
Track

Track
Track
Track
Track

DN

— Measure
- Measure

— Measure
— Measure
— Measure
— Measure

e

Beat
Beat

Beat
Beat
Beat
Beat

6240 - Voice 0 - Note 11/3
6480 — Voice 0 - Note 0/2

960 — Voice 0 — Note 5/2
1920 - Voice 0 - Note 5/2
2880 - Voice 0 — Note 5/2
3840 - Voice 0 - Note 5/2

All referential can be accessed starting from a note.

Let’s rewrite the printNote function in a more readable way.

/% *

* Print all referential

* @param
* @param
* @param
* @param
* @param

*/

function printNote ($track,

{

echo sprintf(

)i

"\nTrack %d - Measure %d - Beat %d - Voice %d - Note %s/%s",

\PhpTabs\Music\Track strack
\PhpTabs\Music\Measure Smeasure

\PhpTabs\Music\Beat sbeat
\PhpTabs\Music\Voice svoice
\PhpTabs\Music\Note Snote

Smeasure, Sbeat, S$voice, $note)

Strack->getNumber (),
Smeasure—->getNumber (),
Sbeat->getStart (),

Svoice->getIndex (),

Snote->getValue (),
Snote->getString ()

This example does not take into account some aspects of the referential such as rest beats, durations, dead notes, note

effects and chord beats.

6.2. Traversing example

17

PhpTabs

18 Chapter 6. Traverse a whole song

CHAPTER /

Target a track or a measure

You may need to target a track or a measure to generate a new complete song.

PhpTabs provides 2 methods to extract a single track or a single measure and obtain a new PhpTabs instance.

7.1 onlyTrack

The method onlyTrack returns a new PhpTabs only with the targeted track. It accepts a track index as parameter.

use PhpTabs\IOFactory;
Sfilename = 'my-file.gp5';

// Read and parse file
$song = IOFactory::fromFile($filename);

// Get the new song with only the third track
ew = $song->onlyTrack(2);

// Saving to Guitar Pro 5 file

&

snew—>save ('3rd-track-of-my-file.gp5');

If you only want to work with a particular track without generating a new song, you may need to have a look to
PhpTabs->getTrack () method.

7.2 onlyMeasure

The method onlyMeasure returns a new PhpTabs only with the targeted measure for each track. It accepts a
measure index as parameter.

19

PhpTabs

use PhpTabs\IOFactory;
$filename = 'my-file.gp5';

// Read and parse file
Ssong = IOFactory::fromFile ($Sfilename);

// Get the new song with only the third measure for each track
Snew = S$song->onlyMeasure (2);

If you only want to work with a particular measure without generating a new song, you may need to have a look to
PhpTabs->getTrack (0) —>getMeasure (0) method.

7.3 Chaining onlyTrack and onlyMeasure

You may want to display only one measure for a particular track. In the example below, we’ll render the first measure
of the first track as an ASCII tab.

use PhpTabs\IOFactory;
$filename = 'my-file.gp5';

// Read and parse file
Ssong

IOFactory::fromFile (Sfilename);

// Display track#0 measure#0 as ASCIIT
echo $song->onlyTrack (0)->onlyMeasure (0) ->toAscii();

Of course, you may do the same thing in one line (Parse file, target a track, target a measure and render).

echo PhpTabs\IOFactory::fromFile ('my-file.gp5")
->onlyTrack (0)
->onlyMeasure (0)
->toAscii();

20 Chapter 7. Target a track or a measure

CHAPTER 8

Slice tracks or measures

You may need to slice tracks or measures to generate a new complete song.

PhpTabs provides 2 methods to extract ranges of tracks or measures to obtain a new PhpTabs instance.

8.1 sliceTracks

The method s1iceTracks returns a new PhpTabs with the targeted tracks.
It requires 2 parameters :
 fromTrackIndex

¢ toTrackIndex

use PhpTabs\IOFactory;
$filename = 'my-file.gpb';

// Read and parse file
Ssong = IOFactory::fromFile ($filename);

// Get a new song with third and fourth tracks
Snew = $song->sliceTracks (2, 3);

// Saving to Guitar Pro 5 file
Snew->save ('3rd-and-4th-tracks-of-my-file.gp5"');

If you only want to work with tracks without generating a new song, you may need to have a look to
PhpTabs->getTracks () method.

21

PhpTabs

8.2 sliceMeasures

The method s1iceMeasures returns a new PhpTabs with the targeted measures for each track.
It accepts 2 parameters :
* fromMeasurelndex

¢ toMeasurelndex

use PhpTabs\IOFactory;
Sfilename = 'my-file.gp5';

// Read and parse file
Ssong = IOFactory::fromFile ($Sfilename);

// Get a new song with the third, fourth
// and fifth measures for each track
Snew = S$song->sliceMeasures (2, 4);

If you only want to work with measures without generating a new song, you may need to have a look to
PhpTabs->getTrack (0) ->getMeasures () method.

8.3 Chaining sliceTracks and sliceMeasures

You may want to display only some measures from particular tracks.

In the example below, we’ll render the first and second measures of the first and second tracks as an ASCII tab.

use PhpTabs\IOFactory;
Sfilename = 'my-file.gp5';

// Read and parse file
$song = IOFactory::fromFile($filename);

// Display tracks #0 and #1, measures #0 and #1 as ASCII
echo $song->sliceTracks (0, 1)->sliceMeasures (0, 1)->toAscii();

You may do the same thing in one line (Parse file, slice tracks, slice measures and render).

echo PhpTabs\IOFactory::fromFile('my-file.gpb5"')
->sliceTracks (0, 1)
->sliceMeasures (0, 1)
->toAscii();

22 Chapter 8. Slice tracks or measures

CHAPTER 9

Render a song

9.1 ASCII tabs

ASCII tablature is a must-have feature, PhpTabs (>= 0.6.0) can render a whole song or a single track as an ASCII
string.

use PhpTabs\IOFactory;
$filename = 'my-file.gp5';

// Read and parse file
Ssong = IOFactory::fromFile ($Sfilename);

// Render the whole song
echo $song->toAscii();

There are a couple of options that can be passed to the toAscii method.

See ASCII renderer for more options.

9.2 Vextab rendering

PhpTabs (>= 0.5.0) can render a track as a VexTab string.

use PhpTabs\IOFactory;
filename = 'my-file.gp5';

// Render the first track
echo $song->toVextab () ;

Some options can be passed to the t oVextab method.

23

PhpTabs

See Vextab renderer for more options.

24 Chapter 9. Render a song

cHAaPTER 10

Render a song as ASCII

ASCII tablature is a must-have feature, PhpTabs (>= 0.6.0) can render a whole song, some measures or tracks as
ASCII strings.

10.1 Quick usage

The following code prints the whole song’s tabstaves. All tracks are printed.

use PhpTabs\IOFactory;
Sfilename = 'my-file.gp5';
// Parse and render

// and render as ASCII tabs
echo IOFactory::fromFile($filename)->toAscii();

This example will ouput something like:

o
|
o\
|
|
|
|
|
|
|
oo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[
[\
|
|
[
N
|
|
|
|
|
|
|
|
[
[\
|
|
-
(@)
|
|
o0
|
|
|

E | m e R 3 \

(continues on next page)

25

PhpTabs

(continued from previous page)

B|-5----- R 5————— R 5————— R | -5————- 5————m 5————- 5————- 5————- 5-———— \
Gl=mmmmmmm e e e | === S—mmmm \
D|-————————m e | ———— S——mmm \
N Bttt |=——mmm 3= \
iy | =——mm 3mmmm \
10.2 Available options
The toAscii () method may take an array of parameters.
Name Default | Description
songHeader false Display song metadata
trackHeader false Display track number and name
maxLineLength | 80 Max length for staves in characters
Track informations can be printed with t rackHeader option.
use PhpTabs\IOFactory;
Sfilename = 'my-file.gp5';
// trackHeader
echo IOFactory::fromFile($filename)->toAscii ([
'trackHeader' => true,
1)
This example will ouput something like:
Track 1: Guitar
E|————mm——mmm e |-10---—- T m
==
B|-——m—— e Xmmm [mmm e B
o=
G|-%——————- §—————m 11-————- | ————— 12---12--10-——————————~ 10-————————~ §————m
|
D|-%---———~ §mmm R 12--12-——————- 12--10--%---
“12-———|
Al ——mm [
-]
E|-———————— | m
|
Track 2: Voice
B | ———mm e | =0——=———————— 3 \
B|-5---—- R 5————— R 5————— R | -5————— R 5————- 5————- 5————- 5-———- \
Gl=mmmmmmmm e e | == S—mmmm \
D|-=——————— oo | ———— S——mmm \
N | == 3 \
E|l-—mmmmmmm e e e | =——mm 3mmmm \

Song informations can be printed with songHeader option.

26 Chapter 10. Render a song as ASCII

PhpTabs

use PhpTabs\IOFactory;
Sfilename = 'my-file.gp5';

// trackHeader

echo IOFactory::fromFile($filename)->toAscii ([
'songHeader' => true,
'trackHeader' => true,

1)

This example will ouput something like:

Title: Testing name
Album: Testing album
Artist: Testing artist
Author: Testing author

Track 1: Guitar

@
o
|
|
|
|
|
|
|
do
|
|
|
|
|
|
=
=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
=
]
|
|
|
=
[\
|
|
=
o
|
|
|
|
|
|
|
|
|
|
|
|
=
o
|
|
|
|
|
|
|
|
|
|
oo
|
|
|
|
|

Track 2: Voice

E|-———————
B|-5--—--- 5-———-— 5————- 5-———-— 5-———- 5-———-—
I
L et
Al -
B — e

w W o o oW
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

To format line length as you want, a maxLineLength option is available. It represents how many characters can be
printed before going to a new line.

use PhpTabs\PhpTabs;
Ssong = new PhpTabs ('my-file.gp5');

// trackHeader

echo $song->toAscii ([
'maxLinelLength' => 10,

1)

This example will ouput something like:

(continues on next page)

10.2. Available options 27

PhpTabs

(continued from previous page)

10.3 Slice and render

By default, the whole song is rendered. Using s/ice and only methods may be useful to target only what you want to

display.

Let’s see how to render only the first track.

use PhpTabs\IOFactory;
$filename = 'my-file.gp5';

// Parse, slice first track

// and render as ASCII tabs

echo IOFactory::fromFile($filename)
—>onlyTrack (0)
->toAscii();

// Parse
// Slice
// Render

Even better, sometimes a track can be so long that you may want to render only some measures.

In the example below, only the first and second measures of the first track are rendered.

use PhpTabs\IOFactory;
Sfilename = 'my-file.gp5';

// Parse, target the first track,

// slice 2 measures

// and render as ASCII tabs

echo IOFactory::fromFile($filename)
—>onlyTrack (0)
->sliceMeasures (0,
->toAscii();

// Parse

// Slice
1) // Slice

// Render

If you need more explanation, let’s have a look at their manual.

Slicing tracks and measures

Target a single track or a single measure

28

Chapter 10. Render a song as ASCII

cHAPTER 11

Render a song as Vextab

VexTab format is provided by vexflow.com. If you want to know more about VexTab format, there is a good tutorial.

PhpTabs (>= 0.5.0) can render a track as a VexTab string.

11.1 Quick Usage

The following code prints all tabstaves of the first track.

use PhpTabs\PhpTabs;
$song = new PhpTabs ('mytab.gpd');

// Render track 0
echo $song->toVextab () ;

This example will ouput something like:

options scale=1 space=16 width=520 tempo=66

tabstave notation=true time=4/4

notes | :8 0/5 9/3 7/4 7/3 T7/3 7/4 0/5 5/3

With a bit of VexFlow JS, that renders:

11.2 Customize VexTab options

Some options can be passed to override default VexTab options.

If the value is the same as VexTab defaults, it won’t be printed.

29

http://www.vexflow.com/vextab/tutorial.html

PhpTabs

;i:

0
4
o
T
A
B 1o
.

vexflow.com

Fig. 1: Ex1: Rendering with defaults

use PhpTabs\PhpTabs;

Ssong = new PhpTabs ('mytab

// Available options
Soptions = [
// Renderer options
'measures_per_stave'

// Global options
'space’

'scale’
'stave-distance'
'width'

'font-size'
'font-face'
'font-style'

'tab-stems'
'tab-stem-direction'
'player’

// Tabstaves options
'notation’
'tablature’

1

// Rendering

-gp4');

1,

le,
0.8,
20,
500,

12,
'times',
'italic',

true,
'down',
false,

true,
true,

echo S$song->toVextab (Soptions);

S HH ¥ R H

S ¥R

An integer

A float or an integer
An integer

An integer, in pixel

An integer
A string
A string

A boolean, default: false
A string up/down, default: up
A boolean, default: false

A boolean, default: false
A boolean, default: true

Will ouput something like:

30

Chapter 11. Render a song as Vextab

PhpTabs

options scale=0.8 space=16 width=500 tab-stems=true tab-stem-direction=down stave-
—distance=20 font-size=12 font-face=times font-style=italic tempo=66

tabstave notation=true time=4/4

notes | :8 0/5 9/3 7/4 7/3 T7/3 7/4 0/5 5/3

That renders:

il ———
i F r T [t F
4 . .

N S [N [

verflowcom

4rou

Fig. 2: Ex2: Rendering with custom options

Other options (tempo, clef, key, etc...) will be set by the tab object.

11.3 Supported VexTab features

11.3.1 Global features

All options rendered as opt ions

Feature Example Supported
tempo tempo=192 OK
player player=true OK
tab-stems tab-stems=true OK
tab-stem-direction | tab-stem-direction=up | OK
width width=1024 OK
scale scale=0.8 OK
space space=16 OK
stave-distance stave-distance=16 OK
font-face font-face=times OK
font-style font-style=italic OK
font-size font-size=12 OK

11.3. Supported VexTab features

31

PhpTabs

11.3.2 Stave features

All options rendered as tabstave

Feature | Example Supported
notation | notation=true | OK
tablature | tablature=true | OK
clef clef=treble OK
key key=Ab @todo
time time=4/4 OK
tuning tuning=eb @todo
11.3.3 Measure and beat features
All options rendered as notes
Bars
Feature Notation | Supported
Bar OK
Double Bar Il @todo
Repeat Begin =l OK
Repeat End = OK
Double Repeat | =: @todo
End Bar == @todo

Beats and notes

32

Chapter 11. Render a song as Vextab

PhpTabs

Feature Notation Supported
Rest Beat ## OK
Bend b OK
Dead Note X OK
Vibrato \% OK
Harsh Vibrato | V @todo
Hammer-on h OK
Pull-off p OK
Taps t OK
Slide S OK
Tied Note T OK
Upstroke u OK
Downstroke d OK
Chord Beat (0/6.2/5.2/4) OK
Tuplets Anh OK
Durations whq8163264 | OK
Annotations $.$ @todo
Staccato $a./bottom.$ @todo
Staccatissimo | $av/bottom.$ @todo
Accent $a>/bottom.$ @todo
Tenuto $a-/bottom.$ @todo
marcato $ar/bottom.$ @todo
LH pizzicato | $a+/bottom.$ @todo
snap pizzicato | $ao/bottom.$ @todo
open note $ah/bottom.$ @todo
up fermata $a@a/bottom.$ @todo
down fermata | $a@u/bottom.$ @todo
bow up $al/bottom.$ @todo
bow down $am/bottom.$ @todo

Lyrics

Lyrics integration still has to be done.

11.3.4 Musical symbols

Feature | Notation | Supported
Trills #tr @todo
Codas #coda @todo
Segnos #segno @todo
Forte #f @todo

11.3. Supported VexTab features

33

PhpTabs

34

Chapter 11. Render a song as Vextab

cHAPTER 12

Calculate measure and beat durations in seconds

PhpTabs provides some useful methods to calculate durations.

12.1 Measure duration

To calculate duration in seconds, the formula is (Number of beats) x 60 / Tempo.

The following code prints duration for the first measure of the first track.

use PhpTabs\PhpTabs;

// Instanciate a tablature
Ssong = new PhpTabs ('myTab.gp5"');

// Take a measure
Smeasure = $song->getTrack (0)->getMeasure (0);

// Calculate duration in seconds

Sduration = 60
* Smeasure->getTimeSignature () —>getNumerator ()
/ Smeasure->getTempo () —>getValue () ;

// Print duration
echo sprintf ("Duration=%ss", S$duration);

With a 4/4 time signature and a tempo of 120, this example will ouput:

Duration=2s

35

PhpTabs

12.2 Beat duration

Calculating beat duration in seconds is quite more complex. It depends on:
¢ tempo
* time signature
¢ non dotted, dotted or double dotted beat
* division type
PhpTabs (>=0.6.0) provides a shortcut method to easily get this value.
The getTime () method is provided by the PhpTabs\Music\Voice model.

The following code prints duration for the first beat of the first measure of the first track.

use PhpTabs\PhpTabs;

// Instanciate a tablature
Ssong = new PhpTabs ('myTab.gp5');

// Take a beat

Sbeat = $song->getTrack (0) ->getMeasure (0) ->getBeat (0) ;

// Get duration in seconds for the first voice
Sduration = $beat->getVoice (0)->getTime () ;

// Print duration
echo sprintf ("Duration=%ss", S$duration);

With a 4/4 time signature, a tempo of 120 and for a quarter beat, this example will ouput:

Duration=0.5s

36 Chapter 12. Calculate measure and beat durations in seconds

cHAPTER 13

Create a song from scratch

13.1 Very minimalistic tablature

The shortest way to create a tablature is to instanciate a PhpTabs.

use

PhpTabs\PhpTabs;

// Instanciate a tablature
Ssong = new PhpTabs () ;

// Read some information
echo S$song->getName () ;

This is only sufficient to make basic operations but it failed if we want to save it as Guitar Pro or MIDI format.

13.2 A minimal and working tablature

We will create a tablature of one track with one measure.

In addition to the track, we have to define a channel, a measure header and a measure.

use
use
use
use
use
use

PhpTabs\Music\Channel;
PhpTabs\Music\Measure;
PhpTabs\Music\MeasureHeader;
PhpTabs\Music\TabString;
PhpTabs\Music\Track;
PhpTabs\PhpTabs;

// Instanciates a tablature
Stablature = new PhpTabs();

(continues on next page)

37

PhpTabs

(continued from previous page)

| Create basic objects

// Create one track
Strack = new Track () ;
Strack->setName ('My first track');

// Define 6 strings

foreach ([64, 59, 55, 50, 45, 40] as S$index => Svalue) {
Sstring = new TabString($index + 1, Svalue);
Strack->addString($string);

// One channel
Schannel = new Channel ();
Schannel->setId(1);

// One measure header, will be shared
// by all first measures of all tracks
Smh = new MeasureHeader ();
Smh—>setNumber (1) ;

// One specific measure for the first track,
// with a MeasureHeader as only parameter

Smeasure = new Measure (Smh);
Sk
| Bound them together
/| —— */

// Attach channel to the song
Stablature->addChannel (Schannel) ;

// Attach measure header to the song
Stablature—->addMeasureHeader ($mh) ;

// Add measure to the track
Strack—->addMeasure (Smeasure) ;

// Bound track and its channel configuration
Strack—->setChannelId($Schannel->getId());

// Finally, attach Track to the Tablature container

Stablature->addTrack (Strack);

// Now we can save, convert, export a fully functional song
Stablature->save ('test.gpb');

Note that objects could have been instanciated in a different order. An approach would have been to create all measure
headers first. Then to create measures for several tracks. Finally, we could have created the tracks and their channels
in order to integrate everything.

38 Chapter 13. Create a song from scratch

PhpTabs

13.3 A working tablature with several tracks and measures

We’ve seen how to create a basic tablature. It’s time to build a more complex tablature.
Let’s set our goals:

* One song called ‘My song with notes’

e 2 tracks, one for a Piano and one for a Contrabass

* 2 measures per track and one note per measure

use PhpTabs\Music\Beat;

use PhpTabs\Music\Channel;

use PhpTabs\Music\Measure;

use PhpTabs\Music\MeasureHeader;
use PhpTabs\Music\Note;

use PhpTabs\Music\TabString;

use PhpTabs\Music\Track;

use PhpTabs\PhpTabs;

// Instanciate a tablature
Stablature = new PhpTabs () ;

// Set song name
Stablature->setName ('My song with notes');

Sk

| Create basic objects

// Create tracks
Spiano_track = new Track();
Spiano_track->setName ('Piano track');

Scontrabass_track = new Track();
Scontrabass_track—->setName ('Contrabass track');

// Create channels

Schannel(O = new Channel ();

Schannel0->setId(1);

$channelO->setProgram(0); // This program is for piano
Schannell = new Channel ();

Schannell->setId(2);

Schannell->setProgram(43); // This program is for contrabass

// One measure header for each measure

Smh0 = new MeasureHeader () ;
SmhO0->setNumber (1) ;
Smhl = new MeasureHeader ();

Smhl->setNumber (2) ;

// 2 measures for the first track
Strack0_measureO = new Measure (Smh0) ;
Strack0O_measurel = new Measure (Smhl);

// 2 measures for the second track
Strackl_measure(l = new Measure (Smh0) ;

(continues on next page)

13.3. A working tablature with several tracks and measures 39

PhpTabs

(continued from previous page)

Strackl_measurel = new Measure (Smhl);
Sk
| Add notes for each measure
/| —— */

foreach ([
StrackO_measure0,
StrackO_measurel,
Strackl_measureO,
Strackl_measurel

] as Smeasure) {
// Create a Beat and a Note
Shbeat = new Beat ();
Snote = new Note () ;
// Attach note to the beat
Sbeat->getVoice (0) —>addNote (Snote) ;
// Make a random value for the note
Snote->setValue (rand (0, 5));
// Attach beat to the measure
Smeasure—>addBeat ($beat) ;

A

| Bound headers, channels, measures and tracks

// Attach channels to the song
Stablature->addChannel ($Schannel0) ;
Stablature—>addChannel ($Schannell);

// Attach measure headers to the song
Stablature->addMeasureHeader (Smh0) ;
Stablature—->addMeasureHeader (Smhl) ;

// Add measures to the first track
Spiano_track—->addMeasure ($Strack0_measure0) ;
Spiano_track->addMeasure ($track(0_measurel) ;
Spiano_track->addString (new TabString(l, 64));

// Add measures to the second track
Scontrabass_track->addMeasure (Strackl_measurel) ;
Scontrabass_track->addMeasure (Strackl_measurel);
Scontrabass_track->addString (new TabString(l, 64));

// Bound tracks and their channel configurations
Spiano_track->setChannelId($SchannelO->getId());
Scontrabass_track->setChannellId($Schannell->getId());

// Finally, attach Tracks to the Tablature container
Stablature->addTrack ($Spiano_track);
Stablature—->addTrack (Scontrabass_track);

A
| Now that we have a functionnal song, we can work
| with it

(continues on next page)

40 Chapter 13. Create a song from scratch

PhpTabs

(continued from previous page)

// Render the first track as a vextab string
echo Stablature->toVextab () ;

// Render the second track as an ASCII string
echo Stablature->onlyTrack (l)->toAscii();

// Save it as a Guitar Pro 5 file
Stablature->save ('song-2-tracks-2-measures.gpb');

Some important things to keep in mind:
* Measure headers are defined globally (attached to the Song)

¢ Measures are defined per track

you MUST have the same number of measures for each track

* This number of measures MUST be equal to the number of measure headers

For all tracks, a measure number 1 MUST be bound to the measure header number 1, and so on for all measures

* To understand how elements are built on each other and how to be on the right scope to interact with them, refer
to the Music stack tree and to the getting/setting/counting rules.

13.3. A working tablature with several tracks and measures 41

PhpTabs

42

Chapter 13. Create a song from scratch

cHAPTER 14

Performance & caching

There are some cases where it’s useful to increase performance.
It largely depends on the context but it may be good to know that PhpTabs provides some tools for this purpose.
It is often possible to summarize performance issues in 2 types:
* IO struggling
* Software issues
To fix 10 issues, we’ll try to put in cache (memory) some data.

But, first, let’s look at what we will cache.

14.1 Context

For this example, we’ll take a real-life Guitar Pro file.
Characteristics:

* 6 tracks

¢ 849 measures (Oh!)

* A little bit less than IMB

Let’s parse it !

$filename = 'big-file.gp5';
// Start

Sstart = microtime (true);
// Parse

$song =

new PhpTabs ($filename);

(continues on next page)

43

PhpTabs

(continued from previous page)

// Stop

&

Sstop = microtime (true);

// Display parsing time
echo "round(- , 2) . 's';

And the result is:

5.78s

Woh! I don’t know what the subject of your app is but we can tell it’s going to be slow.
As usual for performance issues, you have to make choices.

We have 6 tracks * 849 measures = 5094 measures. Do you want to display all of these in a webpage
? In a mobile app ?

Let’s say that we only want to display one track.

PhpTabs provides features ro rarget a single track and to generate a new file.

14.2 Slicing tracks

In this example, starting from the whole file, we’ll create 6 files with only one track in each.

Sfilename = 'big-file.gpb5';
// Parse
Ssong = new PhpTabs (Sfilename);

// Generate one file per track
for ($Si = 0; S$i < S$song->countTracks(); S$i++) {
Ssong->onlyTrack ($i)->save ("track—-{$i}-{S$Sfilename}");

Now, we’re going to test parsing for one of these files.

$filename = 'track-0-big-file.gp5';
// Start

Sstart = microtime (true);

// Parse

Ssong = new PhpTabs ($filename);

// Stop

Sstop = microtime (true);

// Display parsing time
echo "\nParsing a track file: " . round($stop - S$start, 2) . 's';
echo "\n" . S$song->getName () ;

Parsing a track file: 0.52s
My song title

44 Chapter 14. Performance & caching

PhpTabs

Ok, that’s better. At the end of this script, you may have seen that we’ve printed out the song title. Indeed, slicing or
targetting a track does not loose global song informations.

14.3 Exporting to JSON

Is it possible to make it faster ?

We’re going to make the same thing than before but instead of saving the track into in a Guitar Pro file, we’re going to
save it in JSON.

$filename = 'big-file.gp5';
// Parse
$song = new PhpTabs (S$filename);

// Generate one JSON file per track
for ($i = 0; $i < $song->countTracks(); S$i++) {
Ssong->onlyTrack ($i)->save ("track-{$i}-{S$filename}.json");

Now, we’re going to test parsing for one of these files.

$filename = 'track-0-big-file.gp5.json';

microtime (true);

// Parse
Ssong = new PhpTabs ($filename);

// Stop
Sstop = microtime (true);

// Display parsing time
echo "\nParsing a JSON file: " . round(Sstop - S$start, 2) . 's';
echo "\n" . S$Ssong->getName () ;

Parsing a JSON file: 0.21s
My song title

It’s good for the moment.

JSON file is bigger than Guitar Pro file. Under the hood, it makes a PhpTabs: :toArray () call, then it converts it
to JSON.

As data is stored in a native Phptabs export, it makes it faster.
The idea here was to parse the whole song only once and split it into several files with sliced tracks.
The new problem is that we have 6 files for tracks.

What about pushing t oArray () results into a cache system ?

14.3. Exporting to JSON 45

PhpTabs

14.4 Caching

We’re going to take all the work done before in order to keep only the best parts.

Best parts are:

* Parsing only once the whole song

* Splitting tracks into smaller units for later use
What we’re introducing here is:

» Exporting tracks to arrays

» Saving them into cache

* Importing an array into PhpTabs

Importing from an array is blazingly fast. There is no parsing time, it’s like re-importing a part already analyzed

previously.

You may have to install Memcache server and client before. Of course, you may use another caching system.

use PhpTabs\IOFactory;

= = new Memcache;
rache—->connect ('localhost', 11211)

or die ("Connection failed");
Sfilename = 'track-0-big-file.gp5';
// Parse
$song = IOFactory::create($filename);

// Generate one array for this track
Sarray = $song->toArray();

// Put in cache
Smemcache->set ($Sfilename, Sarray);

And now, we may load this track from cache.

use PhpTabs\IOFactory;

ache = new Memcache;
che->connect ('localhost', 11211)
or die ("Connection failed");

Sfilename = 'track-0-big-file.gp5';
// Start
Sstart = microtime (true);

// Get from cache
Ssong = IOFactory::fromArray (
Smemcache->get ($filename)

)i

Sstop = microtime (true);

(continues on next page)

46

Chapter 14. Performance & caching

PhpTabs

(continued from previous page)

// Display loading time
echo "\nloading time : " . round($stop - S$start, 2) . 's';

Loading time : 0.13s

It’s a quick example on how to tackle some performance issues. You may not use these scripts without adapting them
to your own context.

However, with that in mind, you have an idea of how to successfully meet production constraints.

If you have any questions or some feedbacks, feel free to open issues or contribute to this manual.

14.4. Caching 47

PhpTabs

48

Chapter 14. Performance & caching

cHAPTER 15

Architecture

In the scheme below, you may see how PhpTabs core is structured.

It may be useful for all PhpTabs users. Nevertheless, this is more for those who plan to contribute.

| Guitar Pro, MIDI |
| JSON, serialized | —-————-— >
| file or string |

Guitar Pro, MIDI
JSON, serialized
XML, YAML file
or string

15.1 Component roles

* Reader imports data from files and strings into the internal model

¢ Writer exports data to files or strings

* Renderer exports data to a human-readable representation,

49

PhpTabs

» Exporter exports data as PHP arrays for caching or various usages
* Importer imports data from internal exports (array)

With the internal music model, you can easily convert files from one type to another.

50 Chapter 15. Architecture

cHAPTER 16

|OFactory

IOFactory is done in order to:

* create empty PhpTabs,

¢ load PhpTabs from files, strings and arrays

use PhpTabs\IOFactory;

& e
2 SOong

Ssong
&
$song

&

Ssong

IOFactory:

IOFactory:

IOFactory::

IOFactory:

IOFactory:

IOFactory:

IOFactory:

IOFactory

:fromJsonFile ($

:create();

:fromArray (Sarray) ;

fromFile (S$Sfilename);

:fromString($string, S$format);

jsonFile);

:fromSerializedFile ($SphpSerializedFilename);
:fromJson ($JjsonString) ;

:fromSerialized($phpSerializedString);

All these methods return a PhpTabs instance.

16.1 create()

This method returns an empty PhpTabs instance.

51

PhpTabs

16.1.1 Type

PhpTabs\PhpTabs

16.1.2 Example

use PhpTabs\IOFactory;

// Equivalent to 'new PhpTabs()'
Stab = IOFactory::create();

// Print track number
echo "Track count=" . Stab->countTracks();

// Should return "Track count=0"

16.2 fromArray($data)

This method returns a PhpTabs resource, loaded from a PHP array.

16.2.1 Parameters

array $data An array previously exported with Sphptabs->toArray ()

16.2.2 Type

PhpTabs\PhpTabs

16.2.3 Example

use PhpTabs\IOFactory;

// Create an empty tabs
Stab = IOFactory::create();

// Export as an array
Sdata = Stab->export();

// Now you can reimport as an array
Stab = IOFactory::fromArray (Sdata);

// Print track number
echo "Track count=" . S$tab->countTracks();

// Should return "Track count=0"

52

Chapter 16. IOFactory

PhpTabs

16.3 fromFile($filename, $type)

This method returns a PhpTabs instance, loaded from a file.

16.3.1 Parameters

string $filename string Stype Optional

16.3.2 Type

PhpTabs\PhpTabs

16.3.3 Example

use PhpTabs\IOFactory;

// Create a PhpTabs instance
Stab = IOFactory::fromFile ('mytabs.gpd');

// Print track number
echo "Track count=" . Stab->countTracks();

// Should return "Track count=2"

In case you need to force a parser type, use the second parameter.

use PhpTabs\IOFactory;

// Create a PhpTabs instance from a JSON file
Stab = IOFactory::fromFile('mytabs.dat', 'Jjson');

// Print track number
echo "Track count=" . S$tab->countTracks|();

// Should return "Track count=2"

16.4 fromString($content, $type)

This method returns a PhpTabs instance, loaded from a string (binary or not).

16.4.1 Parameters

string Scontent string Stype

16.4.2 Type

PhpTabs\PhpTabs

16.3. fromFile($filename, $type)

53

PhpTabs

16.4.3 Example

use PhpTabs\IOFactory;
Scontent = file_get_contents ('mytabs.gpd');

// Create a PhpTabs instance
$song = IOFactory::fromString($content, 'gpd');

// Work with the song
echo S$song->getName () ;

In case you need to force a parser type, use the second parameter.

16.5 fromdJsonFile($filename)

This method returns a PhpTabs resource, loaded from a JSON file.

16.5.1 Parameters

string $filename

16.5.2 Type

PhpTabs\PhpTabs

16.5.3 Example

use PhpTabs\IOFactory;

// Create a PhpTabs instance
Stab = IOFactory::fromJsonFile ('mytabs. json');

// Print track number
echo "Track count=" . S$tab->countTracks();

// Should return "Track count=2"

16.6 fromSerializedFile($filename)

This method returns a PhpTabs resource, loaded from a PHP serialized file.

16.6.1 Parameters

string $filename

54

Chapter 16. IOFactory

PhpTabs

16.6.2 Type

PhpTabs\PhpTabs

16.6.3 Example

use PhpTabs\IOFactory;

// Create a PhpTabs instance
Stab = IOFactory::fromSerializedFile ('mytabs.ser');

// Print track number
echo "Track count=" . S$tab->countTracks|();

// Should return "Track count=2"

16.7 fromJson($string)

This method returns a PhpTabs instance loaded from a JSON string.

16.7.1 Parameters

string string

16.7.2 Type

PhpTabs\PhpTabs

16.7.3 Example

use PhpTabs\IOFactory;

// Create a PhpTabs instance

Stab = IOFactory::fromJdson('{"song":{"name":null, "artist":null,"album":null, "author
—":null, "copyright":null, "writer":null, "comments":null, "channels":[], "measureHeaders
=":[],"tracks": [1}}');

// Print track number
echo "Track count=" . Stab->countTracks();

// Should return "Track count=0"

16.8 fromSerialized($string)

This method returns a PhpTabs instance, loaded from a PHP serialized string.

16.7. fromJson($string) 55

PhpTabs

16.8.1 Parameters

string string

16.8.2 Type

PhpTabs\PhpTabs

16.8.3 Example

use PhpTabs\IOFactory;

// Create a PhpTabs instance

Stab = IOFactory::fromSerialized('a:1l:{s:4:"song";a:10:{s:4:"name";N;s:6:"artist";N;
—s:5:"album";N;s:6:"author";N;s:9:"copyright";N;s:6:"writer";N;s:8:"comments";N;s:8:
—"channels";a:0:{}s:14:"measureHeaders";a:0:{}s:6:"tracks";a:0:{}}}");

// Print track number
echo "Track count=" . Stab->countTracks();

// Should return "Track count=0"

56 Chapter 16. I0Factory

cHAPTER 17

PhpTabs

PhpTabs provides some methods to access metadata, attributes and nodes.

17.1 Read song informations

You may read metadata with the following methods. They all return string or null.

use PhpTabs\PhpTabs;

Ssong = new PhpTabs ('my-song.gpb5');
// Display all metas

echo sprintf ("

Title: %s

Album: %s

Artist:
Author:
Writer:

o° o o
n 0 n

Date: $%s
Copyright: %s
Transcriber: %s
Comments: %s",

Ssong->getName (),
Ssong—->getAlbum(),
$song->getArtist (),
Ssong->getAuthor (),
Ssong->getWriter ()
Ssong->getDate (),
Ssong->getCopyright (),
Ssong->getTranscriber (),
$song->getComments (),

I4

57

PhpTabs

It will ouput something like:

Title: Song title

Album: My album

Artist: Me and my band

Author: Me and my band too
Writer: A writer

Date: A long time ago

Copyright: So cheap

Transcriber:

Comments: Some multiline comments

17.2 Write song informations

For each getter method, a setter is available.

Ssong->setName ('New song title');
Ssong->setAlbum('Song album');
Ssong->setArtist ('Song artist');
Ssong->setAuthor ('Song author');
Ssong->setWriter ('Song writer');
Ssong->setDate ('Song date');
Ssong->setComments ('Song comments');
Ssong->setCopyright ('Song copyright');

17.3 Channels

You may handle channels.

// Number of channels
Scount = $song->countChannels () ;

// Get an array of channels
Schannels = $song->getChannels () ;

// Get a single channel by its index
// starting from 0 to n-1
Schannel = $song->getChannel (0);

// Get a single channel by its id (integer)
Schannel = $song->getChannelById(1l);

// Remove a channel
$song->removeChannel ($Schannel) ;

// Add a channel
Ssong—>addChannel (Schannel) ;

58

Chapter 17. PhpTabs

PhpTabs

17.4 Measure headers

You may handle measure headers.

// Number of measure headers
Scount = $song->countMeasureHeaders();

// Get an array of measure headers
SmeasureHeaders = S$song->getMeasureHeaders () ;

// Get a single measure header by its index
// starting from 0 to n-1
SmeasureHeader = $song->getMeasureHeader (0);

// Remove a measure header
Ssong->removeMeasureHeader ($SmeasureHeader) ;

// Add a measure header
Ssong->addMeasureHeader (SmeasureHeader) ;

17.5 Tracks

You may handle tracks.

// Number of tracks
Scount = $song->countTracks();

// Get an array of tracks
Stracks = $song->getTracks();

// Get a single track by its index
// starting from 0 to n-1
Strack = $song->getTrack(0);

// Remove a track
Ssong->removeTrack ($Strack) ;

// Add a track
Ssong->addTrack ($track) ;

17.4. Measure headers

59

PhpTabs

60

Chapter 17. PhpTabs

cHAPTER 18

Music model

PhpTabs builds a musical tree which is called the Music-Model (MM).

18.1 Tree

Song (= A PhpTabs instance)
¢ []JChannel
— []JChannelParameter
[... channels]
¢ [JMeasureHeader
— Song [parent]
— Tempo
— TimeSignature
% Duration
- DivisionType
[... measureHeaders |

¢ []Track

Song [parent]

Color

Lyric

[[Measure
* Track [parent]
+ Marker

61

PhpTabs

+* MeasureHeader

+ []Beat

- Measure [parent]

- Stroke
- Chord

- Text

- [IVoice

- Beat [parent]

- Duration

- [INote

- Voice [parent]

- NoteEffect

- EffectBend

- EffectGrace

- EffectHarmonic

- EffectTremoloBar

- EffectTremoloPicking

- EffectTrill

[...

[... voices |

[... beats]

[... measures |

— []TabString

[... tracks]

notes |

18.2 Traversing the tree is made simple

In this example, we read the fret value and string number, for the first note of the first track.

$song = new PhpTabs ('mytab.gpd4');

// We read a note

Snote = $song
—->getTrack (0)
->getMeasure (0)
—>getBeat (0)
->getVoice (0)
->getNote (0) ;

HH FH W H K

Track 0
Measure 0
Beat 0
Voice 0
Note 0

(continues on next page)

62

Chapter 18. Music model

PhpTabs

(continued from previous page)

// Print fret and string numbers

echo sprintf (
"Note: %$s/%4d",
Snote->getValue (),
Snote->getString ()

)i

It will ouput something like:

Note: 13/2

Below, we make the same thing, for all tracks.

Stab = new PhpTabs ('mytab.gpd');
foreach (Stab->getTracks () as Strack) {

// We read a note
Snote = Strack

->getMeasure (0) # Measure 0
->getBeat (0) # Beat 0
->getVoice (0) # Voice 0
->getNote (0) ; # Note 0

// Print track, fret and string numbers
echo sprintf (
"\nTrack %d - Note: %s/%d ",
Strack->getNumber (),
Snote->getValue (),
Snote->getString ()
)i

It will ouput something like:

Track 1 - Note: 13/2
Track 2 - Note: 5/2

Now, we read all the beats for the first measure of all tracks.

Stab = new PhpTabs ('mytab.gp4');
foreach (Stab->getTracks () as Strack) {
foreach (Strack->getMeasure (0)->getBeats () as $idxBeat => Sbeat) {

// We read a note

Snote = S$beat
->getVoice (0) # Voice 0
->getNote (0) ; # Note 0

// Print Track, Beat, fret and string numbers
echo sprintf (
"\nTrack %d - Beat %d - Note: %s/%d ",
Strack->getNumber (),

(continues on next page)

18.2. Traversing the tree is made simple 63

PhpTabs

(continued from previous page)

SidxBeat,
null !== S$note ? $note->getValue ()
null !== Snote ? S$note->getString():
)
}

}

Outputs:

Track 1 - Beat 0 - Note: -/0

Track 1 - Beat 1 - Note: -/0

Track 1 - Beat 2 - Note: 11/3

Track 1 - Beat 3 - Note: 0/2

Track 2 - Beat 0 - Note: 5/2

Track 2 - Beat 1 — Note: 5/2

Track 2 - Beat 2 - Note: 5/2

Track 2 - Beat 3 - Note: 5/2

Track 2 - Beat 4 — Note: 5/2

Track 2 - Beat 5 - Note: 5/2

Note the first two beats, they must be rest beats.

A short but useful view of the MOM is :

* Song
— Track
* Measure
- Beat
- Voice
- Note

You can traverse it this way:

Stab
->getTrack (0)
—->getMeasure (0)
->getBeat (0)
->getVoice (0)
—->getNote (0) ;

18.3 Traversing the first level

A Song object contains:
¢ meta data (Name, artist, etc...)
* channels
e measure headers

e tracks

64

Chapter 18. Music model

PhpTabs

Channel, MeasureHeader and Track can be accessed with following methods:

18.4 Traversing Channels

getChannels (), getChannel () and getChannelById () methods

In this example, we print the channel names.

// Working with all channels
foreach ($song->getChannels as S$Schannel) {
echo S$channel->getName () . PHP_EOL;

// Accessing by index
echo $song->getChannel (0) ->getName () . PHP_EOL;
// Outputs something like "Clean Guitar 1"

// Accessing by id
echo $song->getChannelById(l)->getName () . PHP_EOL;
// Outputs something like "Clean Guitar 1"

18.5 Traversing MeasureHeaders

getMeasureHeaders () and getMeasureHeader () methods

In this example, we print the tempo for each measure.

// Working with all measure headers
foreach ($song->getMeasureHeaders () as Sheader) {
echo $header->getTempo () ->getValue () . PHP_EOL;

// Accessing by index to the first header
echo $song->getMeasureHeader (0) —>getTempo () —>getValue ()
// Outputs something like "90"

18.6 Traversing Tracks

getTracks () and getTrack () methods

In this example, we print the number of measures by track.

// Working with all tracks
foreach ($song->getTracks() as Strack) {
echo Strack->countMeasures () . PHP_EOL;

(continues on next page)

18.4. Traversing Channels

65

PhpTabs

(continued from previous page)

// Accessing by index to the first track
echo $song->getTrack (0)->countMeasures ()
// Outputs something like "4" (small tab!)

PHP_EOL;

66

Chapter 18. Music model

	Overview
	Requirements
	Install
	Supported file formats
	Contribution and support
	Running the test suite
	License

	Parse from files
	PhpTabs
	IOFactory

	Parse from strings
	IOFactory
	PhpTabs

	Export to files
	PhpTabs::save($filename, $format = null)

	Export to variables
	Phptabs::convert($format)
	PhpTabs shortcuts
	PHP array

	Traverse a whole song
	Getter and counter rules
	Traversing example

	Target a track or a measure
	onlyTrack
	onlyMeasure
	Chaining onlyTrack and onlyMeasure

	Slice tracks or measures
	sliceTracks
	sliceMeasures
	Chaining sliceTracks and sliceMeasures

	Render a song
	ASCII tabs
	Vextab rendering

	Render a song as ASCII
	Quick usage
	Available options
	Slice and render

	Render a song as Vextab
	Quick Usage
	Customize VexTab options
	Supported VexTab features

	Calculate measure and beat durations in seconds
	Measure duration
	Beat duration

	Create a song from scratch
	Very minimalistic tablature
	A minimal and working tablature
	A working tablature with several tracks and measures

	Performance & caching
	Context
	Slicing tracks
	Exporting to JSON
	Caching

	Architecture
	Component roles

	IOFactory
	create()
	fromArray($data)
	fromFile($filename, $type)
	fromString($content, $type)
	fromJsonFile($filename)
	fromSerializedFile($filename)
	fromJson($string)
	fromSerialized($string)

	PhpTabs
	Read song informations
	Write song informations
	Channels
	Measure headers
	Tracks

	Music model
	Tree
	Traversing the tree is made simple
	Traversing the first level
	Traversing Channels
	Traversing MeasureHeaders
	Traversing Tracks

